Foamy virus integration.

نویسندگان

  • Thomas Juretzek
  • Teresa Holm
  • Kathleen Gärtner
  • Sylvia Kanzler
  • Dirk Lindemann
  • Ottmar Herchenröder
  • Marcus Picard-Maureau
  • Matthias Rammling
  • Martin Heinkelein
  • Axel Rethwilm
چکیده

It had been suggested that during integration of spumaretroviruses (foamy viruses) the right (U5) end of the cDNA is processed, while the left (U3) remains uncleaved. We confirmed this hypothesis by sequencing two-long terminal repeat (LTR) circle junctions of unintegrated DNA. Based on an infectious foamy virus molecular clone, a set of constructs harboring mutations at the 5' end of the U3 region in the 3' LTR was analyzed for particle export, reverse transcription, and replication. Following transient transfection some mutants were severely impaired in generating infectious virus, while others replicated almost like the wild type. The replication competence of the mutants was unrelated to the cleavability of the newly created U3 end. This became obvious with two mutants both belonging to the high-titer type. One mutant containing a dinucleotide artificially transferred from the right to the left end was trimmed upon integration, while another one with an unrelated dinucleotide in that place was not. The latter construct in particular showed that the canonical TG motif at the beginning of the provirus is not essential for foamy virus integration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple integrations of human foamy virus in persistently infected human erythroleukemia cells.

Foamy viruses are complex retroviruses whose replication strategy resembles that of conventional retroviruses. However, foamy virus replication also resembles that of hepadnaviruses in many respects. Because hepadnaviruses replicate in an integrase-independent manner, we were interested in investigating the characteristics of human foamy virus (HFV) integration. We have shown that HFV requires ...

متن کامل

Genome-wide mapping of foamy virus vector integrations into a human cell line.

Integration-site selection by retroviruses and retroviral vectors has gained increased scientific interest. Foamy viruses (FVs) constitute a unique subfamily (Spumavirinae) of the family Retroviridae, for which the integration pattern into the human genome has not yet been determined. To accomplish this, 293 cells were transduced with FV vectors and the integration sites into the cellular genom...

متن کامل

An active foamy virus integrase is required for virus replication.

Foamy viruses (FVs) make use of a replication strategy which is unique among retroviruses and shows analogies to hepadnaviruses. The presence of an integrase (IN) and obligate provirus integration distinguish retroviruses from hepadnaviruses. To clarify whether a functional IN is required for FV replication, a mutant in the highly conserved DD35E motif of the active centre was analysed. This mu...

متن کامل

Retargeted Foamy Virus Vectors Integrate Less Frequently Near Proto-oncogenes

Retroviral gene therapy offers immense potential to treat many genetic diseases and has already shown efficacy in clinical trials. However, retroviral vector mediated genotoxicity remains a major challenge and clinically relevant approaches to reduce integration near genes and proto-oncogenes are needed. Foamy retroviral vectors have several advantages over gammaretroviral and lentiviral vector...

متن کامل

Structural basis for spumavirus GAG tethering to chromatin.

The interactions between a retrovirus and host cell chromatin that underlie integration and provirus expression are poorly understood. The prototype foamy virus (PFV) structural protein GAG associates with chromosomes via a chromatin-binding sequence (CBS) located within its C-terminal region. Here, we show that the PFV CBS is essential and sufficient for a direct interaction with nucleosomes a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 78 5  شماره 

صفحات  -

تاریخ انتشار 2004